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Closing Developments in Aerodynamic Simulation

with Disjoint Patched Meshes

Charles K. Lombard

PEDA Corporation

1. Introduction

Recent and projected developments in supercomputers, numerical grid gen-

eration techniques and computational algorithms for the compressible Euler and

Navier-Stokes equations portend a major revolution in the manner, pace, and cost

of design and the resulting performance of aerodynamic systems. To realize these

potential benefits, certain closing developments in computational technique must

be made in order to effect a highly accurate, reliable, efficient and productive sim-

ulation environment for aerodynamic design analysis.

A primary need of the developments is to achieve The capability for a user to

easily, and rapidly perform flowfieid calculations accurately among problems of dis-

parate and realistically complex geometries. The natural approach to realizing this

objective with comparatively straightforward extensions of existing computational

technology is through the use of systems of quadrilateral patched meshes.

Such systems can be either/both composite (joined) or overset (disjoint). In

the former case adjacent patches share. a common boundary, or at least parallel

boundaries in the case of mesh patch overlap for purposes of applying numerical

boundary conditions. With composite meshes, patch boundaries are piecewise fitted

to segments of physical or computational boundaries or embedded flow structures.

As shown by Lombard, et al', composite mesh systems, that may have numerically

useful properties of geometric continuity across patch boundaries, admit topolog-

ically singular global meshes that have the capability to connect computational

regions of great (really any) geometric complexity. However, situations exist where
multiple mesh topologies, each naturally related to some different piece of geome-
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try or flow structure, offer greater flexibility and accuracy than composite meshing

alone. Examples involve multiple bodies that may have relative motion or weak

shocks that bear little geometric relationship to boundaries of the flow domain. In

such cases systems of disparately oriented and at least partially overset grids as

proposed by Berger and Oliger2 allow arbitrarily high resolution of all features of

the flowfield.

To make efficient, productive use of patched meshing strategies requires a body

of new computational tools and methodology that are the objectives of the present

research. The needed factors are: (1) a simple procedure for generating patched

computational meshes with freedom of point and gradient specification on all patch

boundaries; (2) improved upwind algorithm/numerical boundary condition proce-

dures for semi-autonomous implicit but unconditionally stable conservative coupling

of solutions on a system of multiple patched meshes; and (3) computer graphics,

particularly a simple algorithm for constructing contour plots on systems of over-

set patched meshes. The glue that is to tie these tools together in a simulation

requiring minimum human intervention to adapt to new configurations is a flexible

parameter controlled multiple mesh data structure. An important objective of the

program is to test the evolving techniques in appropriate problems.

2. Research Accomplishments

In the first year of an anticipated three year program the emphasis was placed

on the most crucial and challenging objectives - patched grid generation and robust

upwind algorithm/boundary procedures for rapid relaxation on multiple meshes.

Algebraic Grid Generation

The concept of patched meshing in which complex domains are broken up into

many geometrically regular and topologically rectangular subdomains leads natu-

rally to the use of efficient algebraic techniques for the construction of the individual

mesh patches. To obtain the desired smoothness properties over the global mesh

in the vicinity of patch boundaries, a technique that permits specification of point >.

2
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distribution and gradient on all boundaries was devised. The technique - termed

generalized transfinite interpolation 3 - makes use of a parameterized general cubic

polynomial for the coordinate curves. Regularity of the mesh is obtained by em-

ploying continuous distributions of the parameters of the curves within judiciously

chosen bounds based on analysis. Stretching functions such as that of Vinokur 4 are

used to distribute points and blending functions are used to distribute parameters

of the curves between lateral boundaries.

A novel feature of the technique is the introduction of the corner singularity

from analysis to govern distribution of points and parameters in the vicinity of

boundary slope singularities. At such points, the method thus obtains the desired

properties of mesh smoothness to the interior. A global mesh solution obtained with

the method for a backward step problem is shown in Figure 1. Here the solution

was generated in two patches one containing the exterior corner and the other

the interior corner. The solution was matched analytically at the patch interface.

Additional background, details of the technique and other numerical results are

contained in reference 3.

Upwind Implicit Relaxation Algorithm/Boundary Procedures

Under the contract we have devised a new single level operationally explicit

but effectively implicit algorithm for gasdynamics. The algorithm is particularly

appropriate for multiple patch mesh systems because each solution sweep operation

on any patch is decoupled from any other. Thus the method is not only very storage

efficient and simple to program including coupling at patch boundaries, but also can

make excellent use of parallel computing in several straightforward ways.

Previously the Beam-Warming factored implicit algorithm s with the Baldwin-

Lomax thin layer viscous approximation6 has provided the basis for two similar

space marching (PNS) procedures 7,8 for the compressible Navier-Stokes equations.

These PNS methods which are highly efficient - requiring half the data storage

and a small fraction of the computer time of two level time dependent methods -
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Y': have proven effective for flows0 ' 10 with favorable streamwise pressure gradient or

with relatively small adverse pressure gradients. However, in the presence of strong

adverse pressure gradient such as occurs in a wing or fin root regions the contem-

porary PNS methods suffer numerical stability problems and may infer streamwise

separation even where separation doesn't occur 11 . In such unseparated (perhaps

weakly separated) regions, numerical stability has been maintained at the price of

employing large amounts of artificial viscosity with a resulting loss in predictive

accuracy and knowledge of the actual state of the flow. Where strong streamwise

separation occurs the methods are unstable and cannot proceed. Particularly for

the increasingly relevant laminar flow situation that will be encountered at very

high altitude by aerodynamic systems such as orbital transfer vehicles (OTV's) and

space shuttle, streamwise separation becomes a likely occurrence 12 in compression

corners associated with canopies, pods, flared bodies, wing or fin roots and de-

flected control surfaces. Thus a more general technique is needed that is inherently

stable for all types of upstream influence. At a minimum the mixed elliptic hyper-

bolic problem requires global iteration, preferably with type dependent differencing.

Various steps in this direction have recently been taken by Rakich 13 , by Rubin and

.~ *. Reddy' 4 and by Rizk and Chaussee 5 .

Rakich 3 utilized global iteration with Vigneron's Mach number dependent

upwind and downwind splitting8 of the pressure gradient for the streamwise mo-

mentum equation. The approach provides an improvement in both accuracy and

stability for both weakly interactive boundary layer flow and strongly interactive

flow without (significant) streamwise separation. Global iteration is carried out by

marching the PNS equation repeatedly only along the downstream direction.

For incompressible flow Rubin and Reddy 14 (also Lin and Rubinl 6 for super-
sonic flow) introduced type dependent (upwind) differencing of the streamwise ve-

locity along with pressure splitting in an implicit method involving a staggard grid

- dependent variable location scheme. This method was extended to compressible
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flow by Khosla and Lai 17. The method admits strong interaction with streamwise

separation but is not homogeneous across the spectrum of Mach number regimes of

interest here. Other PNS related methods for subsonic flow and boundary layer flow

with streamwise reversal have recently been reviewed by Brown"8 in conjunction

with a new staggered grid scheme.

In an attempted generalization, Rizk and Chaussee' 5 presented a hybrid tech-

nique of space marching in supersonic zones and relaxation with a Beam-Warming

time dependent central difference method over zones of strong upstream influence

with streamwise separation. They presented two variations of the time dependent

method: one fully implicit requiring two levels of storage and matrix inversion pro-

cedures in all space directions, the other explicit in all space directions but the thin

layer direction and requiring only one level of storage as in a space marching algo-

rithm. Both procedures require the same several hundred iterations minimum to

reasonably converge, with the semi explicit procedure requiring substantially less

machine time. However, both procedures are inherently unstable, except for the

use of artificial dissipation. The marginal stability coupled with the lack of type

dependent differencing and well posed boundary approximations all contribute to

slow convergence. In balance, while workable, the hybrid approach leaves something

to be desired from the points of view of convenience, computer time and internal

consistency of the global solution procedure.

A new globally iterated scheme related to that which will be presented here, has

been presented by Moretti 9 . In his procedure for steady inviscid flows, the Euler

equations are cast in Riemann variables and the resulting uncoupled equations are

solved by integrating each Riemann variable separately, sweeping back and forth

alternatively along each coordinate line. The coupling between the equations and,

thus, the non-linearity are introduced only through the boundaries and the updating

of state after complete sweeps. As can be inferred from the results to be presented

here, the reduced coupling inherently limits the rate of convergence of Moretti's
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method and the procedure is not extendable to the compressible Navier-Stokes

equations.

New Universal Single Level Scheme CSCM-S

The CSCM flux difference eigenvector split upwind implicit method 20' 2 1' 22 for

the inviscid terms of the compressible Navier-Stokes equations provides the natural

basis for an unconditionally stable space marching technique through regions of

subsonic and streamwise separated flow. In such regions the split method can be

likened to stable marching of each scalar characteristic wave system in the direction

of its associated eigenvalue (simple wave velocity). In supersonic flow, where all

eigenvalues have the same sign, the method automatically becomes similar to the

referenced PNS techniques based on the Beam-Warming factored implicit method

with the Baldwin-Lomax thin layer viscous approximation.

Compared to contemporary central difference methods, the CSCM character-

istics based upwind difference approximation with its inherent numerical stability

leads to greatly reduced oscillation and greater accuracy in the presence of captured

discontinuities such as shocks, contacts and physical or computational boundaries.

The correct mathematical domains of dependence that correspond with physical

directions of wave propagation are coupled with well posed characteristic boundary

approximations2 1 naturally consistent with the interior point scheme. The result

is faster sorting out of transient disturbances and substantially more rapid conver-

gence to the steady state. The splitting and the associated time dependent implicit

method have been described in detail in references (20) and (22) for quasi 1-D and

2-D planar or axisymmetric flow.

In the following, we will sketch the differences between the time dependent

method and the new space marching technique which we designate CSCM-S. The

discussion will begin with the quasi 1-D inviscid formulation, present some results

elucidating the properties and performance of the method, then give additional

details entering into multidimensional inviscid and thin layer viscous procedures

6
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and, lastly, present early 2-D solutions obtained with the new single level scheme

in problems solved previously 2 2 with the time dependent method.

Quasi 1-D Formulation

The general jth interior point difference equations for the time dependent

CSCM upwind implicit method is written

n n
(I+.A+V ±.4-A)bqj = -A+Aq) . -AAq) (1)

where V and A are backward and forward spatial difference operators. In the

notation the interval averaged matrices between node points j and j + 1 are labeled

j. The right hand side of equation (1) is written for the first order method. Higher

order methods in space are given with results in references 20 and 22.

Central to its accurate shock capturing capability, the CSCM conservative flux

difference splitting has the "property U" put forth by Roe 23

(A + A-)Aq)j= AF)j = F+j - Fj (2)

Here q is the conservative dependent variable vector and F is the associated flux

vector. The matrices X+ and A are the splittings of the CSCM interval averaged

Jacobian matrix according to the signs of the averaged eigenvalues. Thus in the

equation for the ith grid point, A+A~q)jj represents stable characteristic spatial

differencing backward for positive eigenvalue contributions and A-Aeq)i, forward

for negative ones.

With 8q = q + - ql, equation (1) defines a two level linearized coupled block

matrix implicit scheme that can be solved by a block tridiagonal procedure. In

reference (22) a new (DDADI) approximately factored alternating sweep bidiagonal

solution procedure for equation (1) is presented that is shown to be very robust and

is effectively explicit, i.e. requires only a decoupled sequence of local block matrix

inversions rather than the solution of the coupled set. For the forward sweep the

bidiagonal solution procedure can be written

(I + A+ - A-)6q*j = RHS + A+6q'j- 1  (3)

7
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For the linear problem, i.e. constant coefficient case of stability analysis, equation

(3) is equivalent to the single level space marching procedure

(I X+A -)q*j =+q*- 1 - Aq - A Aq) (4)

33

Nonlinearity enters in the single level space marching form (4) in that at each step of

the forward sweep the matrices A+ are averaged between q*j- 1 and q' rather than

homogeneously at the old iteration level n. Similarly, a companion backward space

marching sweep that is symmetric to equation (4) and that is intimately related to

the backward sweep of the alternating bidiagonal algorithm of reference (22) is

(I +-A- -A+Aq*)-i A-q; - n 1(5)

The method given by equations (4) and (5) is von Neumann unconditionally sta-

ble for the scalar wave equation. The analysis shows the significance of DDADI

approximate factorization in rendering both the forward and backward sweeps sep-

arately stable regardless of eigenvalue sign. Consequently as the local Courant

number becomes very large, the robust method becomes a very effective (symmetric

Gauss-Seidel) relaxation scheme for the steady equations, a fact which substantially

contributes to the very fast performance that will be demonstrated.

At a right computational boundary on the forward sweep we solve the charac-

teristic boundary point apprcximation 22

(A+ +A+)Sq Nq q n (6
N - A N (6)

qn+1 =q and at a left, on the backward sweep

(A- - A-)bql = A-qf1 - Aq 2 (7)12

Following the solution of equations (6) and (7) the conservative state vector is

iteratively corrected 2 ' to maintain the accuracy of prescribed boundary conditions

while not disrupting the representation of the computed characteristic variables

8



running to the boundary from the interior. Analysis of a model system with upwind

differenced scalar equations and coupled boundary conditions was related to the

linearized bidiagonal scheme2 2 by Oliger and Lombard25 ; the analysis also strongly

supports the numerically confirmed robust stability of the present nonlinear method

for gasdynamics. In contract to reference 22, a useful result of reference 25 is that

on the forward sweep there is no need for a predictor step at the left boundary

J = 1; to the solution sweep begins at J = 2. Similarly, the backward sweep begins

at J=N-1.

* -. With the updating at each step, where in equation (5) Sqj = q .2+ - q!, it is

clear that the symmetric pair of equations (4) and (5) serve to advance the solution

two pseudo time (iteration) levels; whereas, the linear alternating bidiagonal sweep

algorithm of reference (22) advances the solution only one level. To maintain con-

servation to a very high degree, in single sweep marching in supersonic zones we

iterate (at least) once locally at each space marching step. The local iteration serves

to make the eigenvectors in the coefficient matrices consistent with the advanced

state and, thus, provides improved accuracy for the nonlinear system. It appears

effective to do this inner iteration everywhere, i.e. in both subsonic and supersonic

regions, as the number of global iteration steps to convergence with two inner iter-

ations has been found reduced by a factor of three to four. Since the computational

work per two steps is about the same for the single level and two level schemes and

beyond the fact that one saves a level of storage in the space marching algorithm,

the question arises: Can one get solutions in less computational work through faster

convergence with the nonlinear space marching algorithm?

One Dimensional Results

First, we present results for supersonic flow with no shock in Shubin's diverging

nozzle. In purely supersonic zones, the experience with the present method is that

the solution can be marched accurately in one global iteration, as ought to be the

case. Figure 2 shows the exact solution (in solid line) and the computed result

IT.-9



from the first forward sweep. It is evident that the method correctly predicts

the solution to plotting accuracy in one forward sweep. With subsequent sweeps

the error (the difference between the exact and the computed solution) reduces to

machine accuracy in less than three global iterations. In fact, by increasing (from

two) the number of inner iterations on the solution procedure at each space marching

step, convergence to prescribed accuracy can be guaranteed in one forward sweep.

This is also true of cor. temporary locally linearized unsplit methods in supersonic

flow.

With the globally iterative nonlinear space marching formulation, early expe-

rience in two quasi 1-D nozzle problems with mixed supersonic-subsonic zones is

that solutions are obtained in roughly an order of magnitude fewer iteration steps

than had been required with the previously fast pseudo time dependent technique

and block tridiagonal solving.

The two nozzle problems which are described and solved by Yee, Beam and

Warming2 6 and solved with the CSCM time dependent technique in references (20)

and (21) are Shubin's diverging nozzle flow and Blottner's converging-diverging

nozzle flow. Both problems involve unmatched overpressures at the outflow which

result in internal shock terminated supersonic zones and subsonic outflow. For

the experiments involving flow of mixed type the same initial data given by Yee,

Beam and Warming - a linear interpolation between inflow and outflow values for

effectively exact solutions of the problems - is used that was used previously with

the time dependent approach.

For flows of mixed type, in Figures 3 and 4 respectively, results are shown for

successive forward and backward sweeps for five global iteration steps with Shubin's

and Blottner's nozzle flows. In both cases, the exact solution as given by Yee, Beam

and Warming is shown in solid line and the present computational results solved

on a 51 point mesh, in boxes. Blottner's nozzle flow is shown converged after 10

global iteration steps. There is substantial evidence in other results not shown that

10
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with further work the number of global iterations required to compute flows such

as Blottner 's can be reduced by a factor of two, to about five.

In Figure 5, we show a subcritical, i.e. completely subsonic, flow solution

computed in only two global iteration steps for the Blottner nozzle geometry with

different inflow conditions. Here the exact analytical solution derived by Venkata-

pathy is shown in solid line and our computed results in boxes.

The alternating direction sweeps in our method have been derived direc.#y out

of theory for solving the implicit set of difference equations. However, one can see

mechanistically, numerically speaking, that omitting the backward sweep from the

pair and globally iterating only with the forward sweep equation (4) will result in

permitting the influence of a subsonic outflow boundary (or interior disturbance) to

propagate upstream only one grid point per global iteration. In such a case, which

relates to other global iteration methods found in the literature and that also sweep

only in the main flow direction, the rate of convergence is greatly inhibited relative

to symmetric sweeping by a factor of order roughly the number of grid points in the

subsonic zone. Mathematically, this inhibition is the result of the failure to include

in the implicit process the effect of the eigenvectors governing upstream influence

but to treat these waves explicitly with effective CFL unity.

In Figure 6 we illustrate the progress of the transient solution to the subcritical

nozzle problem after 15 forward sweeps, with the backward sweeps omitted. One

can clearly see that the wave influence of the outflow boundary has progressed only

15 mesh points forward of the outflow boundary. In Figure 7 the transient solution

is shown after 60 steps which is beyond one characteristic transit time (equivalent

to 50 mesh intervals) for the upwind wave to reach the inflow boundary. In Figure

8 we show the history of the RMS error in the primitive variables. The solution is

found to converge to roughly the same RMS error after three characteristic times

(150 steps) as the solution obtained with the symmetric alternating sweep sequence

after only 3 global iterations.



Blottner's supercritical nozzle problem which involves subsonic inflow acceler-

ating through a sonic point to a supersonic zone terminated by a shock to subsonic

outflow is the most computationally demanding of the test cases and indicates the

capability for the method to compute simply and consistently over the subsonic

forebody and base regions of blunt bodies in supersonic flow. Thus the need for

separate time dependent codes will be obviated by this new method.

Finally, in Figures 9 and 10, we present the convergence history for the present

nonlinear scheme and the linearized time dependent scheme for completely subsonic

and supersonic nozzle flows. The x-axis shows the number of iterations each scheme

requires to reduce the exact error to five orders of magnitude for various Courant

numbers. It is evident that the present scheme converges extremely fast at all CFL

numbers compared with the method based on the linearized block tridiagonal solver.

Two Dimensional Formulation

For two dimensional flow, assuming a marching coordinate , inviscid terms

B+V1? + B-AV7 (8a)

and ,,

-B + Aiq)kl - B-Anq)k (8b)

are added to the left and right hand sides respectively of both the forward and back-

ward sweep equations (4) and (5). For viscous flow, second centrally differenced,

thin layer viscous terms are also added in the 77 direction as is conventionally prac-

ticed, e.g. Steger 7 . With the terms for the t7 cross marching coordinate direction,

the technique now becomes an implicit method of lines. Along each r coordinate

line, one can solve the equations coupled with a block tridiagonal procedure. Alter-

natively, a further DDADI bidiagonal approximate factorization can be employed

in the 77 direction and solved either linearly as in reference (22) or nonlinearly as

here in the direction. As shown in the quasi 2-D numerical experiments of ref-

erence (22), DDADI bidiagonal approximate factorization is stable for viscous as

12



well as inviscid terms. Finally in reference (22) there is a relevant discussion of the

reduced approximate factorization error that attends using DDADI in one or more

space directions. A variety of multidimensional solution strategies derived from

DDADI bidiagonal approximate factorization in a simple symbolic algebra based

on the difference stencil are presented in reference 24.

While extensions to 3-D are not given in detail here, we note such extensions to

a developing two level 3-D CSCM upwind scheme are possible and will be adopted in

the future. For 3-D, the inviscid terms similar to (8a) and (8b) will again be added

for the cross flow direction. For efficiency in solving each resulting marching plane,

the implicit operators for the 17 and coordinate directions can be approximately

factored using DDADI as described in reference (22) for two space directions.

Two Dimensional Results

We present results for a 450 - 150 axisymmetric transonic nozzle flow previously

studied experimentally by Cuffel, Back and Massier 28 and computationally by Cline,

Prozan, Serra and Shelton (all referenced in (28)) and ourselves2 2 . In Figure 11 we

show results after 10 steps of an early computation run at a local CFL number of

20 with the present first order single level scheme. Except for the addition of an

error correction procedure 2 ' to counter numerical inflow boundary condition drift,

a factor which has improved the present solution in the vicinity of the axis, the

effectively converged results found here are the same as those given for the two

level scheme in reference 22. (As long as the problem has a unique solution, the two

schemes must give equivalent results since the right hand side difference equation

sets, including boundary approximations, are the same.)

For the solution given in Figure 11, we noted a very rapid rate of reduction

in residual, three orders of magnitude in ten steps. This compares with 60 steps

given in reference (22) for the solution obtained with the two level scheme. The

rapid convergence found in this transonic problem for the CSCM-S method with

viscous terms provides the reasonable expectation of similar fast results to be ob-

13



tained without viscous effects. Thus the method in multidimensions appears to have

attractive potential for an improved transonic Euler solver as well as Navier-Stokes

solver.

Next, we present first order inviscid and viscous results for an inlet problem

shown in Figure 12. The pressure contours for the first order inviscid solutions are

shown in Figure 13. Figure 14 shows the first order viscous results. The viscous

computation shows the presence of the leading edge shock. The flow structure com-

pares very well with the theoretical (for the inviscid case) and other computational

results. In Figure 15, the inviscid and viscous wall pressure are compared with

the exact solution (inviscid). Figure 16 shows the convergence history of the RMS

residue of all the conservative flow variables for the inviscid problem solved at CFL''

= 100 with 4 inner iterations at every axial location. For the inviscid case, only

forward marching was carried out and backward marching was omitted. The solu-

tion has converged for practical purposes at the end of the first sweep. The residue

reaches machine accuracy in 10 iterations. In a later paper , we show the residual

reduction versus inner iteration number in single sweep solutions for supersonic flow

and compare results with contemporary PNS procedures.

Patched Mesh Boundary Procedures

In previous work Lombard, et a121'22 and Oliger and Lombard25 gave stable

implicit procedures for computing the solution at external boundaries of a com-

putational domain. Those procedures generalized the work of Kenzer to matrix

coupled linearized boundary conditions complementing a set of advective difference

equations (associated with well posed characteristics) to the boundary.

Under the present contract we have explored the problem of implicitly cou-

pling at interior patch boundaries the global solution on a system of multiple patch

meshes. The approach we have taken in this research is numerical experimenta-

tion among a number of boundary treatment approximations to the solution of the

continuous domain problem. For comparison purposes with previous single mesh

14
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results, numerical experiments were performed with the well tested two level pseudo

time relaxation OSOM scheme at the interior points of the mesh patches.

Our first experiments, to be described here, dealt with breaking a single co-

ordinate line into segments and solving sequentially on each the equations for a

quasi 2-D viscous compressible flow. The model problem, with which we experi-

I.' mented in reference 22 for an uninterrupted mesh, is a transient pipe flow resulting

from an initially nonequilibrated pressure between the axis and wall boundaries.

Three kinds of cases were run with the two-level linearized implicit procedure; all

featured sequential solving on patches with at least one point of overlap. Case 1

had frozen boundary data, obtained from the solution on neighboring meshes in an

Ii operationally explicit manner. Specifically at left and right first computed interior

points of a patch, we solved the bidiagonal equations respectively

n- n

X+-1 -(X Xn-)q 2 -AXq (9a)

and

(I-A- + A V)bqN... = A~q N 2 (.X+ - X-)qN 1 k Aq N (b

Here the symbols n, n + 1 indicate the "frozen" boundary data to come from the

solution on the interior of an adjoining and partially overlying patch may be either

at the old or new iteration level in the global procedure. In Case 1 the solution on

all the grids was effectively updated at the same time.

Case 2 featured reverse sequential cycling of the two level time dependent solu-

tion procedure through the grids on alternate global steps. In the forward sequence

the right interior patch boundaries were (a) frozen or (b) computed with one-sided

characteristic boundary conditions obviating any change in the characteristic data

from outside (to the right of) a patch. The left interior patch boundaries inherited

implicit data (bq) from the solution on the computed patch to the left. In the

K backward sequence all the roles were reversed including the directions of forward

elimination and back substitution in the tridiagonal matrix inversion procedure.

15
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Case 3 featured cycling through the patches in the predictor (forward elimi-

nation) step of the solution procedure, inheriting implicit left boundary data as in

Case 2. Then the patches were cycled through in reverse order on the corrector

(back substitution) step. The result (save for interpolation if data points of the

grids were interlaced) is identically equivalent to solving on an uninterrupted single

patch mesh.

The results of the three sets of experiments were comparable for local time steps

based on constant CFL number up to about 50. Beyond that the rate of convergence

of the solutions for Cases 1 and 2 diminished and at sufficiently high CFL number

failed to converge. The effort involved in Case 2 with the two level scheme was not

rewarded relative to the simple procedure of Case 1. Within the framework of the

single-level symmetric Gauss-Seidel implicit relaxation scheme, however, Case 2a is

operationally no more difficult than Case 1 and more closely approximates Case 3.

Case 2b has a consistency problem that inhibits firm convergence.

Figure 17 compares rms residual (density) convergence history for Cases 1 and

3 with three mesh segments with two cells of overlap and run at CFL 25. As one

might expect, the effectively uninterrupted mesh procedure is found to converge

(two to three times) faster for about the first 50 steps through the major transient.

After that the performance is comparable. The performance of the frozen boundary

treatment Case 1 with five segments at CFL 25 was found to be no' materially worse

than with three segments, but the performance degradation with increasing CFL

was found to proceed faster with increasing number of patches.

From the results of the quasi 2-D experiments and extrapolation from expe-

rience with the single level scheme, we observe that the simple boundary proce-

dure with frozen conservative variable data taken from the solutions on adjacent

meshes and coupled implicitly by alternating direction sequential solving through

the patches has robust stability to sufficiently high CFL number to yield a rate of

convergence meeting our needs.
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3. Professional Personnel

Professional researchers who contributed to this project are

Dr. Charles K. Lombard, Principal Investigator

Professor Joseph Oliger, Consultant

Dr. Marcel Vinokur, Consultant

Dr. Ethiraj Venkatapathy

Dr. Jorge Bardina.

4. Interactions

The research described in this report has to this point been partially presented

in the form of a paper on algebraic grid generation by Vinokur and Lombard (refer-

ence 3), a SIAM meeting paper (reference 25) by Oliger and Lombard on boundary

procedures for bidiagonal alternating sweep schemes and a Computational Fluid

Dynamics Seminar at NASA-Ames Research Center by Lombard on the Univer-

sal Single Level Implicit Algorithm. The latter invoked tremendous interest and

discussion.

The research is about to spawn three other papers on the single level relaxation

algorithm - references 24 and 29 and the unreferenced paper

Lombard, C.K., Venkatapathy, E. and Bardina, J.: Forebody and Baseflow of

a Dragbrake OTV by an Extremely Fast Single Level Implicit Algorithm, AIAA-

84-1699, Snowmass, Colorado, June 1984.

5. New Discoveries

The Universal Single Level Algorithm for the compressible Euler or Navier-

Stokes equations is a new discovery in numerical methods that promises to result

in substantial efficiences in data storage, programming, machine time and human

productivity.
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Figure 1. Portion of an algebraically generated

computational mesh for a flow domain containing an

external and an internal corner.
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Figure 12. Schematics of the supersonic inlet flow problem.
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Figure 1F. Convergence history of the RMS of
the residuals for the inviscid first order inlet
problem with 4 inner iterations per global sweep.
Note at the end of the first sweep the residual
has reduced and the solution has converged for all
Dractical purposes.
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